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Minimum Discrimination Information Estimation and Application

S. Kullback
The George Washington Unilversity
Wasnington, D. C. 20006

Abstract

Tnis paper presents in some detail the application of
tne minimum discrimination information theorem to the analysis
of multidimensional contingency tables. It is snown that the
form of the minimum discrimination Information estimate as a
member of an exponentlal famlly provides a regression
expression for the logaritnm of tne estimate. Computatlonal
procedures for the evaluation of the regression parameters and
the minimum discrimination information estimates are described
along witn the tests for the nypotheses as provided by the

minimum discrimination lnformation statlstics.

0. Introduction. Tnis paper 1s related to [9] and [ 10] 1n wnich

certain pasic tecnniques and procedures were presented for the

1 Supported in part by the Air Force Office of Sclentiflc Researcn,

United States Alr Force, under
Grant AFOSR-68-1513.

This paper was reproduced photographically from the author's manuscript.
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analysls of multidimensional contingency tables. 1In this paper
we shall examine the underlylng tneory in greater detall and
present one lmportant area of application. In particular we
shall detall the close analogy of thls application with
multivariate regression analysis. Although tne ingredients of
the underlying theory were discussed in [11] 1t seems necessary
and desirable to present tnese 1deas nhere in greater detail,

3 We also remark that a more extensive computer program than

£ that descriped in [6] and [ 9] nas been prepared by Professor

Ireland of The George Washington University. This new program

can handle tables of nignher dimension tnan four-way contingency

tables and also provides tne values of additional useful

E parameters.

. It should be pointed out tnat there are other areas cf

arplication of minimum discrimination information estimation

than that considered in detall in tnls paper, for example, [3],

{8, €515 [T, [li], (121, [13], [14]. Tne particular

applicatlion we shall consider here can be described as ritting

the observed values in tne cells of a contingency table in

terms of a regression based on sets of observed marginals as |

explanatory variables.

1. Discrimination Information. To make the discusslon more

specific we shall present it in terms of tne analysis of four-

way contimgency tables., All the essential features of a more

general presentation appear. Let us consider the space
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of four-way contingency tatles R X S X T X U of dimension

rx s x tx u so that the generlc variable is w = (i,J,k,4),

i=1,...,r, 3J=1,,..,8, Kk =1,...,t, L =1,...,u. Suppose

there are two probabllity distributlions or contingency tables
( we snhall use these terms interchangeably ) defined over the
space i, say p(w), m(w), 5 p(w) = 1, % m(w) = 1. Tne

discrimination Information is defined by

(1.1) I(p:m) = % p(w) tn

Tne basls for this definition, 1ts properties, and relation to
other definitions of information measures may be found in [11],

in the Proceedings of [13] and references tnerein. For the
particular types of application of interest nere the m-distripution,
mw , in tne definition (1.1) according to the problem of

interest may eltner be specified, or it may be an estimated
distribution, or 1t may be an observed distribution. The
p-distribution, p(w), in the definition (1.1) ranges over or

is a member of a family of distributions of interest.

Of the various properties of I(p:m) we mentlon in particular

tne fact that I(p:v) > 0 and = O if and only if p(w) = mw(w).

2, Minimum discrimination information estimation. Many

problems in the analysis of contingency tables may be characterized

as estimating a distribution or contingency table subject to

certain restraints and then comparing the estimated table with an




observed table to determine wnetner the observed table

satisfies a null nypothesis implied by the restraints., In
accordance witn the prinéiple of minimum discrimination
information estimatlon we select that memvber of the family

of p~distripbutions satisfying the restraints wnich minimizes

the discrimination information I(p:m) over tne family of
pertinent p-distributions. We denote tne minimum discrimination

information estimate by p*(w) so that

(2.1) I(p*wm) == p*{(w) 4n P*(w) - pin I(p:m).
m(w)

Unless otherwise stated, the summation 1is over Q wnicn will be
omitted.

In one class of problems tne restraints specify some
requirement external to tne observed values, for example, that
a set of marglnals,nave specified values as determlined by genetic
or other tneory [41, [5], [12], or tnat marginals pbe ncmogeneous
{33, [14], or that thne distripution satisfy certain symmetry
conditions [3]. In such problems w(w) is taken to be an observed
contingency table, that 1s, x{w) = x(1Jkt) = nm(ijxt), where
n=3 x(w),

In another class of problems the restralnts specify that the
estimated distribution or contingency table have some set of
marginals wnicn are tne same as those of an observed contlngency
table. In such cases m(w) 1s taken to be eltner the uniform
distribution w(ijkt) = 1/rstu or a distribution already estimated
subject to restraints contained in and implied by tne restraints

under examination. The latter case includes the classical

4

.




nypotneses of Independence, condlitional independence, homogenelty,
conditional homogenelty and interaction, all of whien can be
considered as instances of generalized independence [ 3], [6],

{71, 81, [91, [10], [13], and will be considered in some detail

in tnls paper.

3. Minimum discrimination information statistic. To test

whether an observed contingency table satlsfies the null
nypothesis as represented by the minimum discrimination
information estimate we compute a measure of tne deviation
potween the observed distribution and the appropriate estimatée
oy tne minimum discriminatlon Informailon statistic. For
notational convenience and later computatlonal convenlence let
us denote tne estimated contingency table in terms of
occurrences by x* (w) = np* (w), tnen for the first category of
problems, tnat is, with restraints determined by external

considerations, tne minimum discrimination information statistic

turns out to be

*
(3.1) 2I(x*:x) = 25 x*(w) ¢n X ()

Xlw
wnich 1s asymptotically distributed as a x? witn appropriate
degrees of freedom under the null nypothesis, For the second
category of problems, that 1s, with the restraints lmplied by

e set of observed marginals, or those of a generallzed

independence nypothesis, the m.d.l. statistlc 1s

o s R e
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x(w)

(3.2) 2I(x:x*) = 25 x{w) 4¢n o)

wnicn 1s asymptotically distriputed as a x? with appropriate
aegrees of freedom under the null nypotnesis,

The statistic in (3.2) 1s also minus twice the logarithm
of tne likelinocd ratio statistic but this is not true for

the statistic in (2.1) or in otner applications [11].

4, Minimum discrimination information theorem. We now present

a tneorem wnicn is tne pbasis for tne principle of minimum
discrimination information estimation and its applications. Ve
snall present it In a form related to the context of tnis
discussion on the analysis of contingency tables.

Let us conslder the space I mentioned in sectlon 1 and
the discrimination Information introduced in (1.1). Suppose
now, for example, that we nave three linearly independent

statistics of interest defined over tne space Q

(4.1) T, (w), Ty(w), Ty (w).

Let us determine tne value of p(w) wnicn minlmizes tne

discrimination information

P(w)
w(w)

(4.2) I(p:m) =2 p(w) 4n

over the family of p-distributions which satlisfy tne restraints

T e




2T, (0) p(w) = o
(4.3) = T,(w) p(w) = &}
2 Ty (w) p(w) = &}

where €, €, 65 are specifled values.

If n(w) satisfles tne restraints (4.3) tnen of course
the minimum value of I(p:m) is zero and the minimizing distripbution
is p*(w) =n(w). More generally, the minimum discrimination

information theorem [ 11] states tnat the minimizing distribution

i3 given by

exp(r, T, (w) + 7, T (w) + 73Ty (w)). m(w)

M(ry 475 474)

(4.4) p*(w) =

where

(4.5) M(r, ,7g,75) = Z exp(r, T, (w) + 1T, (W) + 74Ty (w)) w(w)

and the T's are parameters wnicn are in essence undetermined
Lagrange multipliers whose values are defined in terms of
" e* ‘

e, &, € vy

e -E%Ln M(T, ,75,Ty) = | ,

- (zexp (T, T, (W) + 7, Ty (w) + 7,7, ()T, (w)m(w))/M(r,,75,Ts) :

R i e
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k (4.6) & = S%; in M(T, ,7,,7,) =

= (2 exp(r, T, (W) + 7,7, (w) +v Ty (WY, (w)m(WYM(7, ,7,,7y)

T
L

*
93-%&111\4(1‘ T T)-

17 8?3 %F

|

| = (s exp (1, (0) + 1,0 (0) + Ty ()T, (w)m(w)) M, ,7,,7,)
1

§ We can now state a number of consequences of tne preceding. 7
We note first that p*(w) 1s a member of an exponential ;

E family of distripbutions generated by ™ (W) and as such has the ?
1 properties of members of an exponential family. In particular %
F p*(w) = m(w) for 7, = 5, = r, = 0. We may also write (L4.4) d

(4.7) *n P 4 M(T, ,7g,Ty) + 7, T (W) 41, T, (@) + T Ty ()
m(w)

=L+ T T () +7,T,(w) + 7, T (w)

with L = - &n M(v,,7,,7,). The regression expression in (4.7)

i il

for tn(p* (w) /i (w)) with T, (w), T, (w), Ty (w) as tne explanatory
k- variables and T,,T,,T, as the egression coefficlents plays an

important role irn tne analysis we shall consider.

i e e e

We note next tnat the minimum value of tne discriminatlon
information (4.2) is

(4.8) I(p 311‘) - 1'19: + Tge: + Tag: - 4in M(TI Tg v'rs)




T

wnere tne @ 's are defined in (4.3) and the T's are determined to
satisfy (4.6). Using the value in (4,7) it may be snown that if
p{w) 1s any member of tne family of distributions satisfying (4.3),

then
(4.9) I(p:™M) = I(p:p*) + I(p*:m).

The pythagorean property (4.9) plays an important role in tne
analysis of information tables.

We note tnirdly relatic s connecting the e*'s, tne 7's,
and the covariance matrix of tne T(w)!'s. If we define the
matrices (vectors)

(de*)t = (aef, ae}, de}), (dr)' = (dr,, dr,, dr)

then [11, p.49]
(L.10) (go*) = s*(dr), (d1) = z*"* (de*)

wnere 3* 1s the covariance matrix of T, (w), T, (w), T, (w) for tne
distribution p*{(w), tnhat 1s, witn
L DY

oF = =(T, ()-6}) (T, (w)-6])p" (W), £ = (o7,),Z "= (o

*“)

e* * T LI
L.11) 3% "oy _9_#.' o
( 3T, 26,

From (4.5) it 1s seen tnat M(7,,7.,7T;) 1is the moment-generating

function of T;(w), T, (), T, (w) under tne distribution 7 (w), nence




.
g y
E tne cumulant-generating function 1s given up to quadratlc terms g

by
(4.12) 4n M(r,,7,,Ts) = 8,7, + 87, + 8Ty ¥ %;23: Oy TyTy

wnere

(4.13) o =3 T, () m(w), o, = 2(T, (¥) - 6, ) (T, (w) - &) mw).

GEl b mras o
-

Thus, using (4.12) in (4.6), we get

*~
e T 0, T
S

(4.14) &) = 8, +f: Ty T

G:=Q‘+;L 9, T

and tnen using (4.14) in (4.8) ylelds

e L e e R

(4.15) oI(p*m) ~ (8% -9)' Z’ (& -8 =" 2L

We nave used tnree functions T, (w), T, (w), Ty(w) tnus far

in the discussion merely as a matter of convenlence., We note tnat

(4.15) nolds for a set of m functions T, (W), 1 = 1,...,m witn

" appropriate meanings for the matrices. Let us partition the cct

of m functions T, (v) into a set H say of m and & set H, of the

remaining m, = m - m, functions, where tne functions in tne set H,

nave the property that

10
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(4.16) oF = ¢

s s 0 i-l,oo.,m‘ .

We have the related partitioning of the covarlance matrix of the

T, (w), 1 =1,...,m

Zas &
. (an z o )zl -l

=N } =X

and the 8, 6%, and T matrices

! —o

k (4.18) €' = (&',8"), 8'= (8!, 8)), ' = (), 1))

In terms of the partitionings in (4.17) and (4.18) tne

relations in (4.14) may be written as

gy S T& A L FLLL

& =8 +Z.L t4i L %

| j
F | and using the fact tnat 6* = 8 , 1t 1s found that using these

results in (4.8) now yilelds

(4.20) 2I(p*:m) = (&F - 8,)' ... (& -8,) = 1! 5,..%

-1
Zooea Zee = Zoe Zan Zas is anm X m matrix., The

E where 3 =3
results under the partitioning will nelp in Interpreting tne
analysis of information values and are similar to those occurring ;
in the testing of subhypotheses in the linear and multivairiate

linear nypotnesis tneory [1l, p. 216, 259].

11 3
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We note from (4.6) and (4.7) that

(k.21) S%...Ln ) =T W -2~ tnMr, ,r,...) =T (w) -6,
1 3Ty

hence T (@) 1s tne maximum likelinood estimator of &f. Thus if

we write T, (w) = 'é’: and denote the values satisfying (4.6) or

(4.14) witn 5: in place of €' and ?a in place of T , we nave

corresponding to (4.15)

(4.22) 2I(p*m) = 23;?1 @ - 24n MF, T,
~ @ -9z @E -1zt

and corresponding to (4.20)

l—!»

~ r -~ -1 ~ A
(h.23) er(p*m) = & -8) £l @ -8) =L Z,.,
We remark tnat the covarlance matrix of the T's is the inverse of
the covariance matrix of the T, (v)'s.
If thne Gr are the averages of n Independent observations
then we nave for the minimum discrimination information statistics
(4.2 on I(f)*:ﬂ) ==n(:9* -g)'_z_“@* - 8) snf'_'z;_i

and in the partitioned case

(4.25) 2n I(P*mn) »n(e* -9)' 1, (8 -8) ~nTly,,., T.-

12
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Under the null hypothesis 2n I(p*:m) in (4.24) or (4.25) 1s

asymptotically distributea as X® respectively witn m or m,

degrees of freedom,

T e——

ek,

) 5. Computational procedures., An experiment has been designed

F i and observations made resulting in a multidimensional contingency
| 3
3 table with the desired classifications and categories., All 3

. the information the experimenter hopes to obtain from thne

. experiment 1s contalned in the contingency table. In the process
: of analysis, the aim 1s to express tne observed table by a
number of parameters depending on some or all of the marginals,

j that is, to find out how much of this total information is

contalned in a swumary conslisting of sets of marginals. Indeed,

! the relatlonsnip between the concept of independence or assoclation

and interaction in contingency tables and tne role the marglnals
play is evidenced in the writings of Bartlett [1], Simpson [17],
Roy and Kastenbaum [161, Lewis [15], Darrocn 2] and others on

the analysis of contingency tables. Thus, the 6's in tne

preceding discussion will be tne marginals of Interest.

5.1. The T(w) functions. Tne T(w) functions for the RX S X T X U

table turn out to be a basic set of simple functions and tnelr
various products. Thus, for example, the T(w) function associated

with tne one-way marginal p(2...) 1s

(5.1) TR(13st) =1 for 1 = 2, any J,K,4

=0 otherwise

13




since
(5.2) = p(1a%t) T, (136) =.p(2...).

Similarly the T{w) function assoclated with tne one-way marginal

p(..3.), for example, is

(5.3) T@(1gkt) = 1 for k = 3, any 1,3,

=0 otnerwise
since
(5.4) = p{ixt) T;r(iau,) = p(..3.).
Thus for the r X 8 X t x u table we have

) linearly independent functions mf(iJKﬁ),a-l,...,r-l

(5.5) ) linearly independent functions Tf(iJKL),ﬂ-l,...,s-l

) (t=1) linearly independent functions i$(1JKL),Y-1,...,t-1
)

linearly independent functions TE(iJKL),b-l;...,u-l,

since, for example,

% 3 Qs(iJKL) = rstu .
a=1

We nave arbltrarly excluded the functlons corresponding to

a=Tr,R=5, y=1t, § =u as a matter of convenlence, we could

nave selected n = 1, 8 = 1, y = 1, § = 1 or any other set of values.

14
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Tne T(w) function assotlated with the two-way marginal
p(12..) say, is TF(iJKL) Tf(iax&) since from tne definition of

T?(iax&) and Tf(iax&) 1t may be seen that

(5.6) TR(13xt) TS(1gkt) =1 for 1 =1, 3 =2, any k4

=0 otherwise

(5.7) = p(L3et) Th(1ge) To(igt) = p(12..).

Tnus the T(w) functicn assoctated with any two-way marginal is
a product of two appropriate functions of the set (5.5).
Similarly tne T(w) function associated with any three-way

marginal will be a product of three of the appropriate functlons

of the set (5.5), for example,
(5.8) = p(13kt) TR(1gkt) TT(13kt) TU(Lkt) = p(2.13).

Similarly the T(w) function associated witn any four-way

marginal will be a product of four of the appropriate functlons

of tne set (5.5), for example,
(5.9) = p(lak) TR(1gke) TO(1gmr) TT(L3ke) TP (1gke) = p(2112).
We note that tnhere are a total of

N, = (r-1) + (s-1) + (t-1) + (u-1)
N, = (r-1)(s-1)+(r-1) (t-1)+(r-1) (u-1)+(s-1) (t-1)+(s=1) (u=1)+(t-1)(u-])

15
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Ny=(r-1) (s-1) (t=1)+(r-1) (s-1) (u=1)+(r-1) (t-1) (u-1)+(s=-1) (t-1) (u-1)
N, =(r-1) (s-1) (t~1) (u-1)

PR O

i respectively of the simple linearly independent functions and

thelr products two, three, four at a time. It may be verified

Saaliaihced taihiin o

that
(5.10) rstu -1 =N = N +N + N +N, .

These values are degrees of freedom in the analysis of information

tables in [6], [107.

i 5.2, Tne p*{w) values. In the usual regression analysis ]

; Procedure, one first computes the regresslon coefflcients and

then gets the values of the estimates, In this case however we
reverse the procedure., Instead of trylng to obtain tne values ;
of the t's from (4.6) we snhall first obtain tne values of p*(w)
by a stralghtforward convergent iterative procedure and then ?
derive tne values of tne t's from (4.7). We snall not discuss j
the detalls of the lteration nere since they nave been described ]

in (43, (61, 791, [10]. The iteration may be descriped as

successively cycling through adjustments of the marginals of
interest starting with tne w(w) distribution until a desired
accuracy of agreement hetween tne set of observed marginals of

interest and the computed marginals has been attained.

5.3. Tne t values., From the definiticns of tne T(w) functions
in section 5.1 it 1s clear that they take on only tne values
0 or 1 for each value of w. From the nature of tne T(w)

functions the set of regression equations (4.7) will nave some
16
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with a single r value which ¢an be determined. Then there will
be a set with one additlional unknown value and some of the t's
already determined. These new unknown t values can be then
determined. This process of successive evaluation is carried

on until all tne values of v are determined.

6. Analysis of information. Although the preceding tneoretical

discussion nas been in terms of probabilities, estimated
probabilities or relative frequencies, in practice it nas been
found more convenient not to divide everytning by n, the total
number of occurrences, and deal witn observed or estimated
occurrences, that is, with nm (ijkt) = n/rstu, x(ijxt), x(1...),
x(.Jk.), X*(1jkt) = n p*(1jkt) etc. Tne analysis of Information
is pbased on the fundamental relation (4.9) for the minimum
discrimination information statistics. Specifically if n p:(w) -
xf(w) 1s the minimum discrimination information estimate
corresponding to a set H of given marginals and x:(m) is the

minimum discrimination information estimate corresponding to a

set H, of glven marginals, wnere H < H , then the pasic relations

are

eI(x:nm) = 2I(x¥:mm) + 2I(x:x¥)
2I(x:nmw) = 2I(x¥:nm) + 2I(x:x¥)
2I(x¥:mm) = 2I(x¥:nm) + 2I(x}:x})
2I(x:x*) = 20(xF:x®) + 2I(x:x¥)

(6.1)

17
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In terms of the representation in (4.4) as an exponential

P T—

family, for our discussion, the two extreme cases are the uniform
distripbution for wnicnh all r's are zero, and tne observed i
f contingency table or distribution for whicn all N = rstu - 1

% T's are needed.

da gt

W Measures of tne form 2I(x:x*), that 1s, the comparison of
an observed contingency table with an estimated contingency table,
are called measures of Interactlon and measures of the form ; -

2I(xy:x¥), that is, tne comparison of two estimated contingency

tables, are called measures of effect, tnat is tne effect of tre

marginals in the set H, but not in the set H.. From the results 3

in (4.24) or (4.25) we see that 21(x:x:) tests a null hypotnesis

that the set of 7T parameters in tne representation of the observed
contingency table x(w) but not in the representatlon of tne
estimated tapble x*(w) are zero, and 2I(x}:x¥) tests a null
nypothesls tnhat the additional set of 7 parameters in the

representation of the estimated table x:(w) but not in tne

representation of tne estimated table x:(w) are zero.

Since the marginals of the estimated table xt(w) wnhich F
form the set of restraints H used to generate x¥(w) are tne 7
same a&s the corresponding marginals of the observed x{w) table
and all lower order implied marginals,zI(x:x:) is also ‘ ?
approximately a quadratic in the differences between the ﬁ
remaining marginals of the x(w) table and the corresponding . ;
ones as calculated from the xJ (w) table. %

Similarly 2I(x::x:) is also approximately a guadratic in é

the differences between those additlonal marginals 1n Hb but not ﬂ

in H, and the corresponding marginal values as computed from tne
18
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As we shall see, because of the nature of tne T(w) functions 1
A

described In section 5.1, the 1's are determined from tne

regression equations (4.7) as sums and differences of values of

4n x*(1jkt). A variety of statistics have been presented in

the literature for the analysis of contingency tables wnich are

quadratics in the marginal velues or quadratics in tne

e

logaritnms of tne observed or estimated values, The principle

T

of minimum discrimination information estimation and its

3 procedures thus provides a unifying relationship since such

statistics may be seen as opposite faces of the minimum

acist (AR

discrimination information statistic.

é We nhave presunted tne approximations in terms of quadratic
forms in the marginals or the T's to assist 1n understanding and
interpreting the analysis of information tables as a bridge
connecting the famlliar procedures of classical regression

analysis and the procedures proposed here. The covarlance matrix

of tne T{(w) functions can be estimated for either the observed
’ table or any of the estimated tables and the inverse of thnat E

matrix found snhould thelr values be desired.

e S
i

7. The 2 X 2 table. Before we present an application of the

preceding ideas to experimental data in a four-way contingency

0 table, we shall reexamine the 2 X 2 table from the point of view
of this paper. The algebrailc detalls are simple in tnis case and
exnibit the unification of tne information theoretic development.

Suppose we nave the observed 2 X 2 table in figure T.1l.

19
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If we rit the one~way

x(11) x(12) x(1.)

x(21) x(22) x(2.)

x(. x(. n
Figure 7.1

marginals, the generalized Independence hypothesis 1s tne
classical independence hypothesls and the minimum discrimination
information estimate Is x* (13) = x(1.)x(.3)/n. A convenient
representation of the regression (4.,7) 1s given in figure 7.2.

The entries in tne columns 7, , T,, T,

1 3 L o 2l Ta
1 1§ 111 1)1
1 23 1] 1
2 114 1 1
2012 1

Figure 7.2

are respectively tne values of tne functions T, (1)), T, (13), T, (1J)
assoclated with the marginals o = x(1.), ¢, = x(.1), 6, = x(11),
and the column neaded L corresponds to the negative of the
logaritnm of tne moment-generating function. For the observed

distribution, recalling the regresaion (4.7), it is found tnat

20
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(7.1) L =tn (x(22)/n/4), v, = 4n (x(12)/x(22)), T, = 4n (x(21)/x(22))
Ty = 4n (x(11)x(22)/x(12)x(21)).

If we call T the matrix with cnrlumns tne columns of Figure 7.2,

tnat is,

(7.2) T =

(e,
oo MM
oo
ocookr

and define a diagonal matrix D with main diagonal the elements
x(13), tnat 1is,

x(11) 0 0 0

(r.3) 2-{ § "‘321&1)8
0 0 0 x(22)

then it may be verified that the estimate of tnhe covariance matrix

of the T;(w) for tne observed contingency table 1s 3 = £hs-1 where

A A
(7.4) _A_ - -1 -iﬂ) - 2'_D_?_
A A

= —e3

(7:5) Ajauy =KAo = A, A;: A,

and A, is 1 x 1,5" is 3 % 3,5.'1-51' 1s 1 x 3. It is found tnat

x(1.)x(2.) x(11) - x(1.)x(.1) x(11)x(2.)
n

n n
(7.6) z~ x(11) - £E)x(1) x(.1)x(.2) x(11)x(.2)
n n n
x(11)x(2.) x(11)x(.2) x(11) - X’ (11)
n n n

21
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Even for tnls slmple case inverting the matrix in (7.6) 1is messy
algebralcally, however,lt is easler to use the relations in (4.10)

and (4.11). We nave from (7.1)

(7.7)  «,=4n x(12) -4nx(22), 7,=4n x(21) - 4n x(22),
Tg= 4n x(11) +4n x(22) -~ 4n x(12) - 4n x(21)

and from 6 = x(1.), § = x(.1), §, = x(11) and tne relations
implied in Figure 7.1 it 1s found that

(7.8) =x(21) = ¢, x(12) = § =~ Q;, x(21) = § =6,,x(22)=n-§, -G, +6,.

It then follows that

N A i 1 o
3,  x(12) x(22) 30, x(22) 36, x(12) x(22)
L SN T S 3ra _ 1 _1_
36, x(22) * 26, x(21) " x(22) ’ 26, x(21)  x(22)
(7.9)
e o1 1 ey L1
36, x(12) x(22) 36, x(21) x(22)
3T3 w 1 1 1 1

3e, x(11) * x(12) +x(21) +x(22)

that is, tne entries of ¥ ' since 3T, = ot!,
- *)
]

22
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Note that the value of tne logaritim of tne cross-product
ratlo as & measure of assoclation appears in the course of the
analysis as tne value of t,, and that r; = O for x*(13) wnose
representation as in Figure 7.2 does not involve the last
column. The minimum discrimination information statistic to
test the null nypotnesis of independence 1s 2I(x:x*). In tnis

case &f = @ , G = § and in accordance witn (4.25)

P A Y TP e AP L TS P I AP e ]

3 = - x(1.)x(.1) 2 1) bl 1 1 .
(7.10) 2I(x:x*) = (x(11) - X{ r)‘x( i (mT11)+§?TTEY':cTTﬁYW?

Remembering that x* (13) =~ x(1.)x(.J)/n, the right-nand side of

(7.10) may also be shown to be

(7.11) = (x(13) =-.x(1.)x(.3)/n)*/ ____xﬁ-x)lx(-w

the classical X° -test for independence with one degree of freedom.
A test wnich nas been proposed for the null nypothesis of no

assoclation or no interaction in the 2 x 2 table is

(7.12) (tn x(11)Hn x(22)~tnx(12)=tn x(21))° <x(§1)+x(%a)+x(%1)+x(éz)

wnich is seen to be the approximation for 2I(x:x*) in terms of the
r's with the covarlance matrix estimated using the observed values
and not the estimated values. We remark that if tne observed
values are used to estimate the covariance matrix tnen instead

of tne classical X°- test in (7.11) there is derlved tne modified

23
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4
E Neyman chi-square
: (7.13) X = 5(x(13) - x(1.)x(.3)/n)* /x(13). 4
8. Example with experimental data. Consider the RX SX T X U
table 8.la representing the results of test shooting under three ' {

different conditions:
£ R:Gun barrel wear:l=l, new, 1=2, moderate, i=3, excessive
S:Gun barrel temperature:j=l, cold, j=2, not

T:Unlt temperature:k=1l, not, k=2, amblent, k=3, cold

i
1

U:Number operative:l=l, success, {=2, fallure.
4 We are Indebted to Mr. B.M. Kurkjlan of tnhe Herry Diamond
: Laboratories for the data and nis interest in tne analytic

procedure we have dlscussed. We note that 15 rcunds each were

fired under each of 18 experimental conditions. Tnis 1s not

necessary for the application of the analysis of information

procedures but was requlred for the earlier application of

Brandt's analysls to tne data. b
Figure 8.1 presents a graphic represertation of the ;

regression (4.7) and 1s similar to that in Figure 7.2 for tne

2 x 2 table. Tne L column corresponds to the negatlve of the

logaritnm of tne moment-generating function (& normalizing value)

4 and eacn of tne other columns is a T(w) function witn the assoclated

v value at the head of the column. Superscripts and subscripts

are used to ldentify the factors and categories involved. The

complete representation in Figure 8.1 with the 35 r values will j
provide an exact representation for the observed values x(w).

Tables 8.2, 8.3, and 8.4 are analysis of information tables 3
24
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presenting appropriate analyses &8s various sets of marginals of
interest are introduced as explanatory variables.

In Figure 8.2 tne columns corresponding to the r parameters
whicn enter into the various distributions appearing in tables
8.2, 8.3 and 8.4 nave been cnecked. Note that for nm, the
uniform distribution, tnere are no checks, and for x(w), the
observed distribution all columns are checked. The degrees of
frecdom for any effect component is the difference in the
number of columns checked for the corresponding estimates., The
degrees of freedom for any interaction component is tne difference
in the number of columns checked for the observed x-distribution
and the estimated distribution.

The null nypotnesis for any effect camponent is thnat the
additional t parameters are zero, for example, the null
nypotnesis for the effect component 2I(x!:x¥) in taple 8.2 1s
that T??, Tf? are zero., Thne null hypotnesis for any interaction
component 1s tnat the set of parameters whicnh are checked for the
observed x-distribution but not for the estimated distribution
are zero, for example, the null nypotnesis for tne third-order

interaction component 2I(x:x}) in table 8.2 1s tnat TF?FP,

RSTU _RSTU RSTU
Ta111’ Ti191? Ta191 are zero.

Note that all the marginals implied rof x* in table 8.4
are x(1...), x(«J..), x(..k.), x(...2), x(13..), x(1.k.), x(1..2),
x(.38.), x(.3.4), x(13k.), x(1J.4) and the marginals implied for
x* in table 8.4 are x(1...), x(.3..), x(.o.k.), x{...4), x{13..),
x(1.k.), x(Leet),x(o3Ke),x(o3.2),x(..k0),x(13K.),x(13.2),x(1.x1),
nence tne six parameters 71U «TU ¢RIU rRIU ¢RTU (RTU appear in

x: put not in x:
25
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We draw the following conclusions from tables 8.2, 8.3, 8.4:
1. Success/Fallure is not nomogeneous over tine 18

experimental situations, x¥(1jkt) = x(1gk.)x(...t)/n, 2I(x:x¢) =

dedaon s i

34,371, 17 D.F.

2, The effect of x(1..4) in table 8.2 1s almost significant,
but those of x(.J.t), x(..kt) are not significant, nence we
proceed as in table 8.4. %

3. The marginals x(1jk.), x(1J3.4), x(1.&t) and tne lower i
order marginals they imply provide an acceptable estimate for the

original date since 2I(x:x:) - 7.413, 6 D.F., tnat is, we accepi ﬁ

a null nypotnesis tnat tne set of slx parameters Tf?P ,TEEP,

RSTU _RSTU _RSTU _RSTU
1111 )73111) Tlxax’ 79131 are zero,

4, Using Figure 8.1 and Figure 8.2 we can express tne

T

logaritnm of the ratio of the estimates for success to fallure
under all 18 experimental conditions, tnat 1s, tne logilt, as
the linear combination of a constant term TP, a term depending
on barrel wear T?P, Tfy, a term depending on tne 1interaction

of barrel wear ana barrel temperature Tff?, Tffy, and a term

depending on the interaction of barrel wear and unit temperature

RTU RTU RTU RTU
Ti11? Tagne Tiaas Tezae

3t

en SQALD _ B (R L oSU 4 oY 4 RSY 4 rRIV
*
x*(1112)

*

< (1211) U RU TU  RIU
n Ty, + Ty, tT,, *tT

—#—‘xn‘(lzlg) 1 11 11 111

4

x*(2111) _ .U RU SU TU RSU RTU

in ¥ (2112) Ty t Tz YTy, Ty ey tTon

*
tn % (2211) P+ -rf? + 'I';I‘P + T:R;I‘U
< (2212) b
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in

in

in

in

{in

in

in

in

in

in

x*(3111)
x* (3112)

I+
x* (3211) _

x* (3212)

x* (1121)
X (1122)

x, (1222)

(2121) _
(2122)

X (2221) _
* (2022)

-%: 'N*

X
x*(3121)
x:" (3122)

|

x* (3221)
e ool
(3222)

X (1132)
x*(1231) _
x*(1232)
x*(2131) _
< (2132)

X
x* (1131)
*

x* (2231)

S WA Reindustm SRR

x* (2232)

TU
Tia

RU
11

RU
T

RU
Ta1

RU
Ta1

SU
Tia

TU
31

RU
T

RU
11

RU
Ta1

RU
Ta1

«TU
T11

SU TU RSU
Tia *Tay t Ty

TU

RTU
Taa

+ T

1)

TU RSU
Tia

+ 7Tt Tayy

TU RTU
Tar * Toay

TU
Tga

SU + RSU
T1a Ti1a

SU RSU
Tia t Tan

27
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*
lln -)-(I—I.S.l_3-}-)— - TP
x* (3132)

it v
n % (3231) _ Ti,

x* (3232)

SuU

11

5. Since the computer program provides not only tne values

of x*(1jkt) but also tne values of 4n (x¥(1jkt)/x¥(3232)), the

values of the T's in conclusion 4 above can be easily found.

WU an 3230 5 oog;
xy (3232)
*
1R e 4n % (1231) | ) -
x¥ (1232)
*
R gn %223 LU
x*(2232)
*
'rf’}' - tn %2200 (3131) - 'rP -
x¥* (3132)
*

2
oG
% (3212)

T * (3221
x; (3222)
*
'I';Rls? - in X (1131) = T:J
xa (1132)
*
S0 o B
x, (2132)
ROV X (1211) _ Ry
118 x (1212) !
RT o
2 U tn % (2211) - T:J

2 X" (2212)

1.6470

2.2870

0.6794

1.9759

0.7TL46

RU
11

RU
Taa

RU
T

RU
Taa ™

28

= T

Sy

- ’I",.1 --00828

SU
. Tll ) 1-7215

U .33%

TU
T1y

R i e ATt i Boai Sy s




*
x (lez2l
RTU _ o, % (1221) U _ RU _ TV = 0.163

T = in -
181 * 1 11
x, (1222)
RTU x* (2221
Tazy = in ._n.(___) - 'r? - T?P - 'rﬂTP = 0.5878

*
x* (2222)

As a check we nave, for example, ¢n (x*(1111)/x}(1112)) =
0.7666 and 1Y + RV 4 Tf? + 710 4 TF?P + Tf?? = 0.7666.

6. Tne values of L and other T parameters for the x:-
distribution can be obtalned from Figure 8.1 and the computer
listing of tre values of &n(x* (1jkt)/x*(3232)) and &n(x*(3232)/nn),
in tnis case mm = 270/ (3x2x3x2). Thus L = -2,3822,

R = an(x} (1232) /%) (3232)) = 1.4701, ete.

7. Tne computer output for x:' (13kt) 1s listed as table 8.5.

Flve values are glven for eacn 1,3,K,L, these are:

Observed: x{1jkt)

Predicted: x¥(1Jkt)

Residual: x(1Jkt) - x¥(1kt)

Standardize: 2 x(ijkt) &n (x(1gket)/x*(1jkt))

Log ratlo: in(x¥(ijkt)/x¥(3232)).

Tnere 1s also given tne value of 2I(x:x:') along witn the degrees

of freedom and a probability paced on tne X9~ distribution and

the value of L as log(x STAR/N/CELLS).

9. Acknowledgment. Tne Interest and cooperaticn of Professor

C.T. Ireland and Dr. H.H. Ku are gratefully acknowledged.
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Analysis of Information

T I e e S P

Table 8,2
E Component due to Information D.F.
{ ayx(igk.) 2I(x:x*)=99.639 18
Pl D)X (1JKe),X (.. 0t)
5 U-effect 2I (X :x¥* ) =65.268 1
E Interaction 2T (x:x¥) =34.371 17
E e)x(igk.),x(1..4)
§ RU-effect |RST 2I(x¥:x})= 5.303 2
{ Interaction 2I(x:x*) =29,068 15
d)x(ijk.),x(1..4),x(.3.¢)
SU-effect |RST,RU 2T (x% :x* )= 0.314 a
Interaction 2I (x:x%) =28.754 14
f | e)x(1jk.),x(1..4),x(.3.4),x(..KL)
] TU-effect |RST,RU, SU 2T (x*:x%)= 2.705 2
; r Interaction 2T (x:x%) =26.049 12
£)x(1gk.),x(. .kt ),x{(13.4)
RSU-effect |RST,RU,SU, TV 2I(x*:x*)= 9.752 2
Interaction 2I(x:x%) =16.297 10

g)x(13k.),x(13.4),x(1.xb)
RTU-effect |RST, RU, SU, TU, RSU 21 (x* :x%)= 8.891
Interaction 2I(x:xy) = 7.406 6
n)x(13k.),x(19.4),x(1.&t),x(.Jkt)
STU-effect |RST, RU, SU,TU, RSYRTU 2I (x§ :x¥)= 4.543

Tnird-order interaction 2I(x:xg) = 2.863

* o
5 =%




Component due to

Table 8.3
Information

D.F.

d)x{1gk.),x(1..4),x(.0.0)

2I(x:x¥) = 28.754

14

m)x(1Jk.),x{13.L)

RSU-effect| RST, RU, SU

Interaction

2I(x*:x*) = 9.649
EI(x:xr) = 19.105

12

r)x(13k.),x(13.2),x(. .kt )
TU-effect| RST, RU, SU, RSU

Interaction

Component due to

21 (x* :x*) = 2.808
2I(x:x#) = 16.297

Taple 8.4

Information

10

D.F.

p)x(13K.),x(...2)

2I(x:x¥) = 34.371

17

e)x(iJk.),x(1..4)
RU-effect|RST

Interactlion

2I(x¥:x*) = 5.303
2I(x:x*) = 29.068

15

m)x(19K.),x(13.¢)

RSU-effect|RST,RU

Interaction

2I(x¥ :x*) = 9.963
2I(x:x*) = 19.105

12

n)x(13k.),x(13.4),x(1.kL)
RTU-effect| RST, RU, RSU

Interaction

x* = x*
[ [ ]

2T(x*:x*) = 11.699
2I(x:x*) « 7.406

NG

G

uua‘}.ﬁrf; L

—
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Tavle 8.5 0
:. F Cémpufe‘z"Output’x:"“
E ] _ __RESIDUALS: R * S * T % y, FIRST 2 _S\BSCRIPTS: ) 1 =
} h 2 =
bl
n "1 OBSERVED 1 $.00C000 6+000C00
e 1___PREDICTED 2 10.241535_ 4.758C02
k 1 RESIDUAL 3 -1.241535 1.241598
! 1_STANDARD I ZE 4 -1.163043_ 1.391587
1 LOG RATILO 5 el bI2188 e la921140
2 OBSERVED 6 8.00€000 ~1.000C00
2~ PREDICTED 7 6.746210 B.254419
- _2.__ RESIDUAL 8 1.252790 ______=1.254419
2 STANDARDIZE 9 1.362679 -1.153870
2___LOG RATIO 10 20276293 o _2.478C61
3 DBSERVED 11 9.00C000 6+000C00
___3___PRECICTED 12 9.012303__ 5.987520
{ 3 RESIDUAL 13 -0.012303 0.012480
3 _STANDARDIZE 14 -0.012295 __ ___ 0.012490____ e
3 LOG RATIO 15 222035903 ___2.156589
!
¥ "7 RESIDUALST R ®* S % T * U, FIRST 2 SUBSCRIPTS: Nz T

1 2

. 1_ . OBSERVED 1 14.00C000______ 1.000€00 o
i 1~ PREDICTED 2 12.75€455 2.241597
| — 1_ __ RESIDUAL 3 10241545 ____=1,261697
1 STANDARD IZE 4 1.30C076 -0.807267

e 1 _LOG RATIO 5 20913506 12174619
2 UBSERVED 6 9.00€000 6.000C00

2 _PREDICTED T 1€.252795____ 4,745%572 .
27 7 RESIDUAL 3 -1.252795 1.256428
2 STANDARUIZE 9 =1.173809 __ __1,407280
2 LUG RATIO 10 20694960 e 129224223

3 OBSERVED 12.00€000 _ 3,000000 o

11 .
TTUTTT TT3TTRPREDICTED T 120 11.987688 3.012478
3 RESIDUAL 13_ 0.012312 -0.012478 ____ —

3 STANDARDIZE 14 0.012308 =0.012452
3 LCG RATIO 15 24851192 e 12470C15

P
i
:
B
£
; RESIDUALS: R * S ® T * U, FIRST 2 SWBSCRIPTS: 2 L

it o e\t o ot i




vl s Sl Dl

ol OBSERVED 1L 11.000000_______4.000C00. .
1 PRECICTED 2 11.68%621 3,314257
1 RESIDUAL 3 =0.685621 0.685743
1 STANUARDIZE 4 ~0.665103 0.752241
1___L0G RATIO 5 b2 822610 12565545
2 OBSERVED 6 14,00C000 1.000€00
2___PREDICTED 7 12.472881 2.527158
2 RESIDUAL 8 1.527119 ~1.527158
2_STANDARUI ZE 9 1.617001 =0.927C95
2" LUG RATIO 10 o 22890868 1294401
3 UBSERVED 11 12,00C000 _ 3,000500
3 PREDICTED 12 12.841480 2.15859¢
. ___ .3 RESIDUAL 13 =06841480 _0.841406
3 STANDARDIZE 14 -0.812287 0.987465
3 LOG RATID 15 22915992 11126269

__RESIDUALS: R * S * T * L, FIRST 2 SLBSCRIPTS: 2 2
1 2
i OBSERVED 1 9.05C000 6.000€00
___1__PREDICTED 2 8+314383 64685740
1 RESIDUAL 3 0.685617 =0.6851740
e ____1_STANDARDIZE 4 C.712138 ___ —0.649305
1 LOG RATIO S 02283299 ___2,261285
2. OBSERVED 6 8000000 _ 7.000€00
2 PREDICTED 7 9.527126 54472840
_2___ RESIDUAL 8 =1.527126_ 1.527160
2 STANDARDIZE 9 -1.367613 1.722786
oo ..2_ _LOG RATIO 10 22021455 . ___2.06111Q
3 URSERVED 11 11.00€000 4 .000€00
3 PREDICTED 12 1C. 156509 __ 4,841 404
3 RESIDUAL 13 0.84 1491 ~0.841404
. 3 STANDARDIZE 14 CeB875411 _ ~0,763€42
3 LUG RATIO 15 24685623 _1.944516
RESIDUALS: R * S * T » U, FIR 2 SUBSCRIPTS: 3 1
e e 1 2
_____ 1____ OBSERVED 1 9.00€000_ 6.000€00
1 PREDICTED 2 8.882741 6.118252
1. RESIDUAL 3 04117259 =0C.l18252
L STANDARDIZE 4 0.118029 -0.117102
L. _LDG RATIO 5. 22551422 e u 4018588

2 OBSEKVED 6 13,00C000 2.000€00
2 __ PREDICTED 7 12.425370 24574304
2 RESIDUAL 8 0574630 -0.574204
2 _STANDARDIZE_ 9~ 0.587705____ =D.504864
27 7L0G RATIO 10 - - _2.881053_ ~12212891
3 OBSERVED 11 13,000000 2.000000
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i 3 _PREDICYED_____ 12 _ _ . 13.691921  _ __ . 1.307411_ ______ .. ..
3 RESIDUAL 13 -0.691921 0.692589
3 _STANDARDIZE 14 -C.674136___ 0.850196 | e—
3 LOG RATIO 15 22984118 e04635261
RESIDUALS: R * S * T % U, FIRST 2 SLBSCRIPTS: 3 2
— . 2 S it b
— 1 O0BSERVED 1 11.00€000 ___ 4,000C00 L
1 PREDICTED 2 11.117260 3.8481743
1. RESIDUAL 3 =C.l17260___ . _0.118257 .
L STANDARDIZE 4 ~0.11€6640 0.120C37
el ___LUG RATIO 5 2.115810 12723597 .
2 OBSERVED 6 13.00C000 2 .000C00
o __2__PREDICTED 7 13574622 1.4256%5, e,
RESIDUAL 8 -Ca574622 0.574305
STANDARDIZE 9 _=0.562285 0 .676574 _ e

LOG RATIO

__ RESIDUAL

10 o __2.915513___ ___0,721512

N1BSERVED. 11____ 1%.00€000 ___
12 14,308073
13 0.691927
14 0.708390

2

2

2

£ e

3  PREVUICTED
3

3 STANDARDIZE
3

T HYPOTHESIS 4

TTTLOG(XSTAR/N/CELLSY =

__LOG RATIO_ 15 . 3,028)35_ . =0,000001 . ___ .. ..

T2r(xixx) =

6 PRUBABILITY UF A LARGER VALUE =  0,284956

-2.382215

_=0.692588 .

"7 7.406  DEGREES OF FREEDUM =

T0.000C05
0.692593

=0.000C59




all e,

i et A A 2

E i L~ i b R ! \ T
3 ! I = i T T e E - N PR
ria,wtlw_l_“___,.m__ [ HEEREEER B i [
g= " 7T 7T 7T 7 7 1 1T 1 T T [ ) i :
L = =] L =~ ! ; ot b C o c ST S il
] () R ' | 3 LI LT T, S 7 S
| IR N N (I B S T S
i L == TP TR T I T T[] ¥ 171 SY >
g 5 == T[Ty renryvpiti g i NN s T N i
P =l=— i T 8 _ : e ] N v Y YT
a8 = = =l (SCHRANCAN O T I S I . Y O I TR O
o= e SIS U A N L ERENEY NNy
al | o s i — f i R T T Y
o= ) S TV ) T (= _ T T sy s vy,
- ] i ] ! - i I | T TR AR EREEE YRR
= —~ 3 i T 1 T R I B ELIE IR TR BES 1 R
a = 00 |=————- Al R N LM Y33 S
r TR S| ———— . i FT 1T 717 V11 Ty Y IR
&IMT.HI - — < Ol - TR Y 3V v 2N
R - - - : i S TV SY Y 3y vy vy
m i : ) 2 - — T T T MI..Jnuv—vr_.u‘u—u
gl . & ——- T == = N RN 5., Sy 3y s
H_ === == == ) I S By ST3ITY Yy
&) A — L o~ NN Yy y SRR
= S e i = A REEREEEENEER
ﬂfhu -~ | - _ | T R EREEE RN
R P T i . e _ S B Y VO VY Yy
L — = R [ B S B R S A R
_ = = = 5 === — T T RN ERIERER EEE
llllll | e ) =T ; _ il 1 AT EEH AR
llllll i I —— 1| [ 3N 3 ) s 3 u:.v.luavlw
(S o e e, e e e _ _ [ TE 1 N/ 23y ) vl~vlvwlvllll
—~ = - = Bl - o~ — o~ Il“ _l, [ AN IY YAy Sy Yy
== p— e — I E=T T == LMY Y VY vy T
— jp— —— —— i | 1 T |~ SRS Y YR yVAY
llllll T e e e e e e A [ e e ——— ”l e T H & k.
SS>SSsEssssSh s st Ll A (KA A A et d S RAIBRTSRhL
N S SSSEAKAGAM M ma oS SSas XN Sommmn w7 PIOR TR
I I e e T | s Pt | TN, D | s ST | ol RSO N E i
SSAAnmS~ KA mm IIAJ.H.JIIIAJJJ/I.A..»_JJIIIL%.JJ —— _—

36




ey

(3]

{41

(51

[6]

{7l

8l

(9]

[1¢”

REFERENCES

Bartlett, M.S. (1935), Contingency table interactions,
J. Roy. Statist. Soc. Supplement 2, 248-252,

Darrocn, J.N. (1962), Interactions in multi-factor contingency
tables, J.R. Statist. Soc., B. 24, 251-263.

Ireland, C.T., Ku, H.H., and Kullpack, S., (1969), Symmatry
and marginal nomogeneity of an r X r contingency tanle, J. Am.
Statist. Assn. 64, 1323-1341,

Ireland, C.T. and Kullback, S., (196€), Contingency tables
with given marginals, Biometrika 55, 179-188.

Ireland, C.T. and Kullback, S., (1968), Minimum discrimination
information estimation, Blometrics 24, 707-713.

Ku, H.H. and Kullback, 8., (1968), Interaction in multi-
dimensional contingency tables:an information tneoretic

approacn, J. Res. Nat. Bur. Stand. B 72, 159-199.

Ku, H.H., and Kullpback, S., (1969), Approximating discrete
probabllity distripbutlon, I.E.E.E. Trans. on Information

Tneory, IT-15, 444-LAT,

Ku, H.H., and Kullback, S. (1969), Analysis of multidimensional
contingency tables:an information tneoretic approacn, I.S.I.
Meeting, London, England, Sept. 1969, 156-158.

Ku, H.H., Vamer, R., and Kullback, S., (1968), Analysis of
multi-dimensional contingency tables, Proceedings of tne

Fourteentn Conference on the Design of Experiments in Army

Researcn Development and Testing, ARD-D Report 69-2, 141-180.

Ku, H.H., Varner, R., and Kullpback, S. (1971), On tne
analysis of multi-dimensional contingency tables, to appear

in J. Am, Statist. Assn.
37




[14]

155

[(17]

Kullvack, S., (1959), Information Theory and Statistics,

Wiley, N.Y.; 1968, Dover Publications, Inc., N.Y.
Kullpback, S., (1968), Probability densities witn given
marginals, Annals Matn. Statist. 39, 1236-1243.

Kullpack, S., (1970), Various applicaticns of minimum
discrimination information estimation, particularly to

problems of contingency table analysis, Proceedings of

The Meeting on Information Measures, University of Waterloo,

Ontario, Canada.
Kullpback, S., (1971), Marginal nomogeneity of multi-
dimensional contingency tables, to appear in Annals of

Matn. Statist.

Lewis, B.N., (1962), On tne analysis of interaction in

multi-dimensional contingency tables, J.R. Statist. Soc. A

125, 88-117.
Roy, S.N.and Kastenbaum, M.A., (1956), On tne nypotnesis of
no "interaction" in a multiway contingency table, Annals

Matn. Statist. 27, T49-57.

Simpson, E.H., (1951), Tne interpretation of in’~raction in
contingency tables, J.R. Statist. Soc. B 13, 238-241

38



